Determinants of the Differential Antizyme-Binding Affinity of Ornithine Decarboxylase
نویسندگان
چکیده
Ornithine decarboxylase (ODC) is a ubiquitous enzyme that is conserved in all species from bacteria to humans. Mammalian ODC is degraded by the proteasome in a ubiquitin-independent manner by direct binding to the antizyme (AZ). In contrast, Trypanosoma brucei ODC has a low binding affinity toward AZ. In this study, we identified key amino acid residues that govern the differential AZ binding affinity of human and Trypanosoma brucei ODC. Multiple sequence alignments of the ODC putative AZ-binding site highlights several key amino acid residues that are different between the human and Trypanosoma brucei ODC protein sequences, including residue 119, 124,125, 129, 136, 137 and 140 (the numbers is for human ODC). We generated a septuple human ODC mutant protein where these seven bases were mutated to match the Trypanosoma brucei ODC protein sequence. The septuple mutant protein was much less sensitive to AZ inhibition compared to the WT protein, suggesting that these amino acid residues play a role in human ODC-AZ binding. Additional experiments with sextuple mutants suggest that residue 137 plays a direct role in AZ binding, and residues 119 and 140 play secondary roles in AZ binding. The dissociation constants were also calculated to quantify the affinity of the ODC-AZ binding interaction. The K(d) value for the wild type ODC protein-AZ heterodimer ([ODC_WT]-AZ) is approximately 0.22 μM, while the K(d) value for the septuple mutant-AZ heterodimer ([ODC_7M]-AZ) is approximately 12.4 μM. The greater than 50-fold increase in [ODC_7M]-AZ binding affinity shows that the ODC-7M enzyme has a much lower binding affinity toward AZ. For the mutant proteins ODC_7M(-Q119H) and ODC_7M(-V137D), the K(d) was 1.4 and 1.2 μM, respectively. These affinities are 6-fold higher than the WT_ODC K(d), which suggests that residues 119 and 137 play a role in AZ binding.
منابع مشابه
Critical Factors Governing the Difference in Antizyme-Binding Affinities between Human Ornithine Decarboxylase and Antizyme Inhibitor
Both ornithine decarboxylase (ODC) and its regulatory protein, antizyme inhibitor (AZI), can bind with antizyme (AZ), but the latter has a higher AZ-binding affinity. The results of this study clearly identify the critical amino acid residues governing the difference in AZ-binding affinities between human ODC and AZI. Inhibition experiments using a series of ODC mutants suggested that residues ...
متن کاملProperties and fluctuations in vivo of rat liver antizyme inhibitor.
Antizyme inhibitor was highly purified from rat liver by using affinity chromatography. It has some structural resemblance to ornithine decarboxylase (ODC), as judged from Mr, immunoreactivity and reversible binding with antizyme. However, unlike hepatic amounts of ODC and ODC-antizyme complex, that of antizyme inhibitor did not show much fluctuation upon putrescine treatment, whereas it decrea...
متن کاملIdentical catalytic-centre activity for mouse kidney and rat liver ornithine decarboxylases as determined with antizyme and affinity labelling.
Since the catalytic-centre activity of mouse kidney ornithine decarboxylase (ODC) has been assumed to be twice as high as that of rat liver ODC, we compared relative catalytic-centre activity of the two enzymes by titration with antizyme, which inhibits ODC by stoichiometric binding. In either a crude or a purified state, both enzymes were inhibited by rat liver antizyme to the same extent, ind...
متن کاملMultifaceted interactions and regulation between antizyme and its interacting proteins cyclin D1, ornithine decarboxylase and antizyme inhibitor
Ornithine decarboxylase (ODC), cyclin D1 (CCND1) and antizyme inhibitor (AZI) promote cell growth. ODC and CCND1 can be degraded through antizyme (AZ)-mediated 26S proteasomal degradation. This paper describes a mechanistic study of the molecular interactions between AZ and its interacting proteins. The dissociation constant (Kd) of the binary AZ-CCND1 complex and the respective binding sites o...
متن کاملDegradation of antizyme inhibitor, an ornithine decarboxylase homologous protein, is ubiquitin-dependent and is inhibited by antizyme.
Ornithine decarboxylase (ODC) is the most notable example of a protein degraded by the 26 S proteasome without ubiquitination. Instead, ODC is targeted to degradation by direct binding to a polyamine-induced protein termed antizyme (Az). Antizyme inhibitor (AzI) is an ODC-related protein that does not retain enzymatic activity yet binds Az with higher affinity than ODC. We show here that like O...
متن کامل